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We present smoothing algorithms for piecewise linear curves, surfaces, and triple
lines of intersection of surfaces that are based on the the idea of sequentially relax-
ing either individual nodes or edges in the mesh. Each relaxation is designed both to
smooth the mesh and to conserve down to round-off error the area or volume enclosed
by the curve or surface. For the case of smoothing surfaces and lines of intersection of
surfaces, each relaxation consists of a pure smoothing component and a volume con-
serving correction which is chosen to be of minimum norm. Since surfaces and triple
intersection lines can be conservatively smoothed, the algorithms are suitable for im-
proving multimaterial grids used by physics simulations where exactly conserving
the volume of each individual material may be a requirement or at least highly desir-
able. The algorithms are also suitable for smoothing piecewise linear functions of one
or two variables while simultaneously preserving their integrals. We show examples
of the application of the more powerful edge-based algorithms to curve, surface, and
multimaterial volume grids and to a thin film simulationg 2001 Academic Press

1. INTRODUCTION

Curves or surfaces obtained from physics-based simulations are frequently “jagged
“non-smooth” and as such may be unsuitable as input for subsequent simulations.
example, Potts model simulations of metallic grain growth describe the interface betw
differing grains as a series of “stair-steps.” The jagged stair-step interface is an arti
of the simulation and might produce incorrect results in subsequent simulations unl
the interface is smoothed. Another example would be Lagrangian surface motion ur
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a computational fluid dynamics flow which could leave surfaces highly convoluted aft
several time-steps and unsuitable for further time-stepping unless they are smoothed.

By “smoothing” a surface grid, we mean (1) adjacent facets of the surface grid he
normals adjusted to vary more gradually, (2) node densities are equidistributed on
surface, and (3) the aspect ratios of facets are improved.

A popular approach to surface grid smoothing has been to rely on a mapping fror
parametric space to the surface and to smooth the grid in the parametric space [5, 10]. T
are drawbacks to this approach. First, a mapping to a parametric space must exist, and
surfaces generated by physical simulations are unstructured and are not easily param
zable. Second, smoothing of the surface grid in the parametric domain—while preser
theshapeof the surface—does not necessarily preserve the volume that the surface grid
closes, due to the discreteness of the grid. This can be unacceptable in physical simulat
Also, exact preservation of surface shape is undesirable for “stair-step” surfaces.

Another approach to surface grid smoothing is evolution of the surface grid by me
curvature [2, 6, 8]. This approach will easily erase jaggedness of the surface, but does
conserve volume and requires a sophisticated PDE solver.

In this paper, we present a non-parametric, volume conserving approach to the smo
ing of piecewise linear surface grids. Our approach will, for example, rapidly deform
nonsmooth closed surface into a smoothed surface which encloses the same volume
to round-off error. The surface grid can be unstructured and the resulting grid will sati
the three conditions for smoothness presented above. To accomplish this, our volume
serving approach allows small deformations inghapeof the surface geometry. However,
the degree of surface deformation can be limited by controlling the number of smooth
iterations performed. Because the algorithms are locally conservative, they are applic:
to open as well as closed curves and surfaces. They could also be used to smooth p
wise linear functions in one or two variables with compact support while preserving the
integral. (However, see note in Section 6.)

Many iterations of volume conserving smoothing will cause much change in the she
of the curve or surface. For example, multiple application of the smoother will turn a cu
into a sphere which encloses the same volume. For most physical simulations, we wis
change the curve or surface shape only enough to allow the simulation to proceed. Th
is most appropriate for the application designer who will utilize these volume conservi
smoothing algorithms to make decisions on appropriate termination criteria. These crit
mightinclude iterating until some mesh quality improvement measure is met or a maxim
allowable surface deformation is reached. For example, one could measure the decree
thel, norm of the vector consisting of all the angles between the normals of adjacent surf
facets (a vector of length equal to the number of edges in the surface) [3].

In Section 2 we develop area conservative smoothing of piecewise linear curves. In ¢
tion 3 we develop volume conservative smoothing of piecewise linear surfaces. In Sectic
we exhibit algorithms for smoothing of triple intersection lines of surfaces which conser
individually all volumes incident on the lines. In Section 5 we apply our algorithms to
thin film simulation. Finally in Section 6 we conclude by tying up some loose ends.

2. AREA CONSERVING SMOOTHING OF CURVE GRIDS

Consider a closed non-self-intersecting curve (Xg, X1, .. ., Xn_1, Xn = Xg) cONsisting
of nline segments ilR?2. SayI" encloses a regioR (Fig. 1). We seek a smoothing operation
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FIG. 1. Closed curvd” enclosing regiorR.

on this curve that can be performed locally at egctihat involves slightly altering the po-
sition ofx; based on nearby or adjacent data points {8ayn, Xi —m+1, - - - » Xj+m}, msmall).
More generally, the smoothing operation could depend on poif®siR, Xi —m+1, - - - » Xj+m
and involve moving one or more points in this neighborhood. The smoothing operat
should be chosen to not alter the aredoff we perform the local smoothing operation in
each local neighborhood in the curve in some order, this is calfedeap We desire that
only a small number of sweeps through the curve need be performed to smooth the ov
appearance of the curve.

If now T" is allowed to intersect itself, it is th@gnedarea ofR (i.e., with respect to the
counter-clockwise orientation) we wish to conserve. Moreover, we can extend our ideast
open curve” = (Xg, X1, ..., Xn—1, Xn # Xo), by requiring that the sought-after smoothing
operations conserve area in the closed clitve (Xg, X1, . . . , Xn—1, Xn, X0)-

The simplest possible area conserving smoothing operation is depicted in Fig. 2. F
we consider the three pointsg, x1, X, alongl’. By moving the central point; parallel to
the line segmeripXz, we are assured conservation of area. Further, by moyisgch that
the projection ofk; ontoXoX; occurs midway betweexy andx,, we have achieved equal
spacing of the segmerigx; andX;xz when projected onto the segmaé®gK;.

We now formally state the algorithm based on this one-point smoothing operation. Fc
vectorv = (x, y) in 2-D, we definev: = (—y, X). Let Agy; = %(xz — X))t - (X1 — Xo) be

FIG. 2. One-point smoothing operation: Movementgfparallel toXyX; assures conservation of area under
curve (Xo, X1, X2)-
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the (signed) area of triangexox>X;. Then

_ 2Amm
X2 — Xoll

1)

is the height ofx; above the baseline segmegk;. i = ”&%ﬁ;i“ is the unit normal to
the baselin&gxz. Our smoothing operation thus involves repositiontadrom its original

position to

1
X = E(xo + Xo) + hii. )
Sweeping through the nodes in sequential order, we obtain the following algorithm:

ALGORITHM 1. Area conserving smoothing of a closed plane curve using single-no
relaxations.

Repeat (sweep) until “done”
Doi =0,...,n-1
[Perform smoothing operation on neighborhd&d X 1, Xi 12}
(i.e., relax node; ;1)]

a (X2 —Xi)"
N = T2 =TT

1
Attt < 5(Xig2 — X))t - (Xig1 — Xi)

Aiit2i+1
h < 25 50m

Xi+1 < 3(X + Xiy2) + h.

(If T is not closed, Algorithm 1 is modified to not relax the endpoint nodes.) Al
gorithm 1, although simple, suffers from the following serious deficiency. Referring 1
Fig. 2, and calling the directiofiox> the direction “tangential” ta™ and the direction
orthogonal toXgX> the “normal” direction, we see that the one-point smoothing opere
tion smooths only in the the tangential direction. Any smoothing in the normal dire
tion is forbidden by the conservation of area requirement. Because of this lack of nort
smoothing, some star-shaped regions (Fig. 3) will not be affected by the operation.
conclude that it is necessary to design a local smoothing operation that includes nor
smoothing.

Now consider four sequential poins, X1, X», X3 alongI". We takeXoX3 to be the
direction tangential to the curve and the direction orthogonabig to be normal to the
curve. If we simultaneously solved for the positionggfx, subject to the constraint of area
conservation, normal smoothing is possible. This is because conservation of area repre
a single constraint in the normal direction, but there are two degrees of freedom availe
(the normal components &f andx,).

Thus, consider the following smoothing operation: Mayex, so that the projection of
X1 0NtOXpX3 is one-third of the way betweedqy andxs and the projection of; is two-thirds
of the way betweerx, andxz. Furthermore, the distances xf andx, away fromXgx3
are set to be equal and this distanker( Fig. 4) is taken to conserve area. If this is done,
smoothing occurs in the normal direction, as well as in the tangential direction.

The calculation ofh is straightforward: The (signed) aréf&z,; of the quadrilateral
(Xo, X3, X2, X1) cannot be altered. Repositioning of the poixtsx, so that their projections
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FIG. 3. Star-shaped region is invariant under (and hence not smoothed by) Algorithm 1.

are equally spaced implies that the area of the quadrilagegaks, X2, X1) will be %hl,
wherel is the length o&kyX3. Thus we require

_ 3 Ao123

h .
2 1

The above smoothing operation can be interpreted as being a smoothing operation
ing on theedgeX;xz. Thus, to perform a smoothing sweep throughusing the above
smoothing operation, we perform the operation on all the edgé&sinfsome order. For
example, if we ussequential ordemwe would perform the smoothing operation on the edg
X1X2, then perform it on the edgexz and continue until we have smoothed the last edg
XnX1.

Hy

FIG. 4. Two-point (edge) smoothing;X; moved to be parallel tByX; with projected endpoints %II andgl.
Choosingh = 229123 conserves areagszs.
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9.0

FIG. 5. Before and after smoothing of a closed stair-step curve using Algorithm 2 with 20 sweeps. Area
region R conserved down to round-off.

ALGORITHM 2. Area conserving smoothing of a closed plane curve using ed
relaxations.

Repeat (sweep) until “done”
Doi =0,...,n—1
[Perform smoothing operation on neighborhd&d X 11, Xi 2, Xj+3}
(i.e., relax edg&i 1, Xi12)]

A (Xi+3— X))
N Ties =010

Aiszitzidl < 3(isa —XD)T - Kigz — X)) + 32 — Xi)" - (Xigs — Xi)
[signed area of quagk;, X3, Xi 12, Xj+1)]

3 _Alitsit2itl
2 [[(Xit3 =Xl

2 1 A
Xit1 <= 5Xi + 3Xi43+hi

h «

Xiy2 < %Xi + %Xi+3 + hf.

InFig. 5, we show the results of performing 20 sweeps on a closed curve. Areais consel
to within round-off error, and the curve is very smooth. Clearly, further iterations will nc
affect the appearance of the smoothed curve. In Fig. 6, we show the results of perforn
Algorithm 2 with 10 sweeps on an open cuiveholding the first and last points fixed.IIf

V-

FIG. 6. Before and after smoothing of an open curve using Algorithm 2 with 10 sweeps.
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were closed by addition of a segment between the first and last points, the area enclose
I would be conserved down to round-off error. Further iterations will continue to defor
the curve.

3. VOLUME CONSERVING SMOOTHING OF SURFACE GRIDS

Now consider a closed surface= |J T, where theT, are planar triangular facets
Ti = Ty, x,x,- We wish to perform a local smoothing operation in sweeps over small neig
borhoods throughout the surface which will have the net effect of smoothing the surf:
without changing the amount of volume enclosed by the faceted surface. (If the surfac
subdivided by other types of geometric facets—such as quadrilaterals—they can be
divided into triangular facets for purposes of the following smoothing schemes.) Mc
generally, ifSis not closed we seek a local smoothing operation that does not alter
enclosed volume whe8 has been closed by some choice of additional triangles.

Similar to the previous section, we first consider the simple operation of altering t
position of a single node atbased on data from its immediate neighbors. Consider Fig. |
here the node at is surrounded by the point§?, x@ ..., x™, which form a counter-
clockwise cycle when viewed from “outside” the surface. We define

e — x( _x.

Suppose we move the nodexdbd x® = x + dx® through the action of a smoothing operation
only depending on data in the immediately surrounding neighborhood. Since this mot
will in general alter the volume enclosed by the surface, we restore the correct volume
further repositioning the central node bfj. That is, to ensure conservation of volume, we
further move the central node by some multiplef a prudently chosen direction. Thus,

the node will undergo a total displacement frarto x 4+ dx, where

dx = dx® + hA. 3)

In fact, we can easily solve for the directidnthat minimizes the norm of the volume

(n)

FIG. 7. Node atx on triangular faceted surface surroundechteighbors ak®, ..., x™.
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correction movemenithfi|| and it will be a direction that could be reasonably considere
to be “normal” to the undisturbed surfacexat
Indeed, when the node is moved fromo x + dx® + hi, the change of volume is given

by
n . . n . .
6dV =) (dx°+hf) - e x eIt = (dx®+ hi) - > el x elIFP, (4)
=1 =1

(The “6” arises from use of the volume formula for tetrahedra employed for the terms
the sumin (4).) ThuglV = 0 implies

_dxs . ZT:l e(j) X e(j+1)

h= AT el x elitd

Thus if we choose

1 e x et
321, e x eli+D

n=

: ()

then| hi|| will be minimized and our minimal volume corrective movement will be
hA = —(dx® - H)A. (6)

Note thatfi could reasonably be considered to be the “normal” to the undisturbed surfz
atx, since it is the normalized sum of area vectors of all triangles incidert on

It remains to specify the smoothing scheme that yieftlbased on nearest neighbor
information. We choose Laplacian smoothing, defined by

Z?:l x(

n

X>=x+dx*=

With this choice, our smoothing scheme (3), (6) is entirely analogous to our simple smoc
ing scheme for curves (2). However, the correction (6) can be used with any smooth
schemex — x5, and indeed smoothing schemes more sophisticated than Laplacian smo
ing are available [4].

ALGORITHM 3. Volume conserving smoothing of a surface using single-node rela
ations.

Repeat (sweep) until “done”
For each node surrounded by neighbofg®, x@ ... x™}
Zf‘ eli) % gi+D
Al ==t
[32] e xein]|
j=1

"

dx® « 721:1 — X
n
X < X+ dx® — (dx5- ).

We give our simple volume corrected smoothing scheme with Laplacian smoothing
Algorithm 3. The weakness of Algorithm 3 is identical to that of the analogous scher
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FIG. 8. Nomenclature for nodes surrounding edg@e, on a triangular faceted surface.

(Algorithm 1) presented in the previous section. Both schemes are simple, but lack smo
ing in the direction normal to the surface, since conservation of area or volume fully
termines the normal distance of the relaxed node from the surface. As a conseque
Algorithm 3 will leave some star-shaped polyhedra (analogous to Fig. 3) unchanged.

Analogous to the development of the previous section, we develop a smoothing opera
which exhibits smoothing normal to the surface, and which involves relaxing two adjact
neighbors—thus we relag@dgeson the surface. Consider Fig. 8; here we contemplat
relaxing the edg&;X; based on data from the surrounding nodes.

Herex; is surrounded by the nodaél) xf), .. (“1) , andxz is surrounded by nodes
X, xP, .. x3, such that
%o =x{" and x; =x.
We definee” = x — x;. We also define
A —Z D el =12 @

We now contemplate moving to X7 = x; + dx’ by some smoothing operation and then
further shifting the two nodes by, which is a multipleh of an optimal directiom chosen
such that volume is conserved affiofi|| is minimal. We derive the optimal changé as
follows. The two nodes undergo the total displacement

dx; = dx®+hA, =12 8)

The movement of the node &t to x; + dx; causes the trianglegxy, x\”, x/ ™) | 1 <
j < ny} to “sweep out” volume between their initial positions and their final positions
{(x2 4 dx, X xU*y |1 < j < ny}. The volume change caused by motion of the nod
atx; tox; + dx; isthus equalto the volume of the tetrahedra, x; + dxi, xi”, xl‘ *1)) 1<

j = nl}! or

6dV; = del el x el = dxy - Ay, (9)
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Next, the movement of the nodexatto x, + dx, creates a volume change similar to (9), but
we must take into account that the nodeat= x(l) has already been movedxe + dx;.

That is,e}” has been changed & + dx,. Thus, defining

ey 1
o = & 4y
() ()

e =6, 2=<j=n,
we have
n2 —_—
6dV2 = ZdXz e(ZJJrl)
j=1
= Z dX2 (J+l) + dx, - dx; x 6(22) + dx; - e(zn” x dXq
=dxo - Ay +dx; - (%(nZ) — eéZ)) x dXq
=dxy - Ay +dXy - vV x dXq,
where

2
—&

(N2)

v=¢e =e? ™. (10)
Thus conservation of volume requires us to have
0=6dV =6dV; +6dV, =dxy-A; +dXy - As +dXs - v x dXg. (12)

Substituting (8) into (11) and solving foryields

dx3 - A1 4dx3 - Az +dx5 - v x dx3

h=-— . 12
A (Ar+Az+V x (dx§—dx3)) (12)
Thus||hA|| is minimized if we choose
AL+ As+ Vv x (dx5 —dx3
ﬁ _ 1 + 2 + X ( 1 2) (13)

HAl +A2+Vx (d — dxg)H ’

That is, the distance the edgex; is translated to recover volume is minimal when we
chooseh andf according to (12) and (I3).

It remains to specify the smoothing scheme that yields¢h®sed on nearest neighbor
information. We choose simultaneous Laplacian smoothing of hoffhat is, we require

<x2 - Z x“)> (14)

and

x5 = n (xl Zx(”> : (15)
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Substituting (15) into (14), we obtain
1 &0 N2 <)
X3=—> x4+ ——) x{. 16
! n]_nz—l;z +n1n2—1§ L ( )

We can now computes, using (16), and then comput€ by substituting the result
into (15).

However, the correction given by (8), (12), and (I13) can be used with any smoothi
scheme that modifies the edgg<;. For one of our test problems, we instead used unde
relaxed Laplacian smoothing:

X<~ (1—wX +ox, =12,

where thex® on the right-hand side are the positions yielded by simultaneous Laplaci
smoothing (14), (15) and th€ on the left-hand side are the positions given by underrelaxe
Laplacian smoothing with & » < 1. This allows smoothing to be slowed down in order
to more finely control surface deformation from iteration to iteration. Algorithm 4 gives ot
volume conserving smoothing scheme with edge relaxation by underrelaxed simultane
Laplacian smoothing.

ALGORITHM 4. Volume conserving smoothing of a surface using edge relaxations.

Repeat (sweep) until “done”
For each edg&;x; surrounded by ne|ghbo(x(”}| 1’2"" " (Fig. 8), relax edge:
A« Z (J) (J+1) i=12

v < eénz) ef)

X] < Nino— 1(21 2X(2J)+n221 zx(lj)

X3 < n_lz(xs+zj 2X(21)

X — o —x), i=12 O<w<l
A <~ A+ A+ Vv x dx§ —dxS)

If (J]JA] > “atiny number”) then

n < A/lIAl
h <« —@dx3-Ar+dx3-Ax+dx5-vxdx3)/|IAl
Xi < Xi +d¢+hA, i=12.

Figures 9 and 10 show results of smoothing grids with nonsmooth features us
Algorithm 4. In Fig. 9, a cube is depicted after 0, 10, 100, and 1000 sweepsowith.
Volume is conserved throughout. Note that after only 10 sweeps the cube has been
smoothed at the 12 edges.

InFig. 10, we initially randomly perturb the node positions of the lower half of a sphere a
use Algorithm 4 for 1, 5, 10, 100, and 1000 sweeps. Wewse0.1 to allow the algorithm
to make changes more gradually. (If we had used 1, it would roughly take 110 as many
iterations to produce the results depicted.) In both these examples, the algorithm seer
be moving the grid toward a spherical shape even though the grid topology is nearly reg
in Fig. 10 and highly irregular in Fig. 9.
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FIG. 9. Cube after 0, 10, 100, and 1000 sweeps over the surface using Algorithm & wth.

4. VOLUME CONSERVING SMOOTHING OF TRIPLE LINES

In simulations involving several volume regions whose union comprises the full cor
putational domain, it may be necessary to perform smoothing on the surfaces of all
volumes with the requirement that each individual volume is conserved. (We refer to e
distinct region as a “material,” and we are here concerned with the problem of smooth
the boundaries of all materials such that all material volumes are conserved.) Algorithn
and 4 are adequate for smoothing nodes that exist on surfaces separating two distinct r
rials or one material and the exterior of the domain but cannot be used for lines of multi
intersection where three or more materials intersect or two or more materials intersect \
the external boundary.

We now generalize our schemes to allow smoothing of nodes along these intersec
lines. Suppose three materials “1,” “2,” and “3” surround a line of multiple intersection |
“triple” line). For a node ak in the interior of the triple line, Algorithm 3 allows us to
conserve material 1 (and thus the sum of the volumes of materials 2 and 3) by correc
smoothing of the node with respect to the boundary surface of material 1. This invol
restricting motions of the node to a plane perpendiculartogiven by (5) with thee'))
chosento lie onthe surface bounding material 1. Further, if we now consider the conserva
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FIG. 10. “Noisy” sphere after 0, 1, 5, 10, 100, and 1000 sweeps over the surface using Algorithm 4 w
w=0.1.

of material 2 (versus the union of materials 1 and 3), we are forced to restrict motions of
node to a plane perpendicularfi® given by (5), with thee') chosen to lie on the surface
bounding material 2.

Thus if motion of the node is restricted to be in the line in the direcﬁ%ﬁ%%g”,
materials 1 and 2 (and hence material 3) are conserved. This yields Algorithm 5. In Al
rithm 5, the smoothing scheme only uses data given by the positions of the preceding
following nodes on the triple line, and can be viewed as a combination of Algorithms
and 3.
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ALGORITHM 5. Volume conserving smoothing of a triple line using single-node relax
ations.

Repeat (sweep) until “done”
For each nodg; in the interior of the triple line preceded by ; and succeeded

by Xi+1
" S €D x el . g
A« =it~ ysing edges from the surface of material “1
1527 e e
a2 thle(“ x ell*d H H wryn
N? « ==t using edges from the surface of material “2
[ o]

norm < ||A® x A@|

If (norm > “a tiny number”) then
t < (A® x A®)/norm
dx® < 2(Xi—1 + Xit1) — Xi
dx; < (dx®- bt
Xi < X + dx;.

From this analysis, we can see that, in the absence of some special restrictions, we ce
smooth single nodes on quadruple intersection lines, because all conditions of volt
conservation would require that motion of the node be orthogonal to three vectors, wh
usually implies zero motion.

Our final algorithm involves smoothing edges on a triple intersection line between n
terials 1, 2, and 3. As in the previous cases where we compared edge relaxation to si
node relaxation, relaxing edges is preferable to relaxing single nodes due to the possik
of smoothing action orthogonal to the triple line.

If we conserve volumes of materials 1 and 2, volume of material 3 will automatically |
conserved. Thus looking at (11), we write

0=6dV@ =dx;- A +dxz- Ay +dxp- v xdx;, =12 17)

Here the meaning of (17) is identical to (11), except here the parametefers to the
particular material or material surface. Thus foe 1, Af“ andv® are computed using
(7) and (10) with thee') chosen to lie on the surface bounding material lo K 2,
guantities are computed using edges lying on the surface bounding materiald; Tdre
the displacements of the endpoints of the triple line edge being relaxed. The displacem
dx; are assumed to be of the form

dxi =dx’+c, i=12 (18)

Here thedx? are displacements due to a smoothing operationcase rigid displacement
of the whole edge designed to restore the volumes of materials 1 and 2. Fodgiveve
will determine thec of least norm.

Indeed, substituting (18) into (17), we obtain

C-AW=g® =12 (19)
where
A® = AL 4 AT +v@ x (dx§ — dx5)
and

g@ = —dx AW —dx§-AY —dxS V@ xdxS, o =12
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From this we can see that forto be of minimum norm, it must be of the form
c=hPAD L WOAD, (20)

therwise, suppose= + + d satisfies (19), for some nonz span
Otherwi hOAD 1 h@A® 4 d satisfies (19), f atal
(AD A@) Thenc = hOWAD + h@A@ satisfies (19) with|c'|| < ||c||.) Therefore, as-

suming the form (20), (19) yields the system
h® g®
h<2>] - [g(a] ' (21)

If AD is not parallel toA®, the matrix on the left-hand side of (21) is symmetric positive
definite and hence invertible. In this case, the solution is given by

AD.AQ  AD.AOQ
AD.AQ A@.pAOQ

1

A FA® [P~ (a0 A®)?
1

A FA® [P - (a0 A®)?

h® —

(HA@)HZg(D —AD . A@gD) (22)

@ _

(~AD . A@gD 4 [|AD|g@).  (23)

ALGORITHM 6. Volume conserving smoothing of a triple line using edge relaxations.

Repeat (sweep) until “done”
For each edgg;x; in the interior of the triple line preceded by and succeeded by
AL >-7_; e’ x el using edges from the surface of material ‘1 1, 2
v « e _ e? ysing edges from the surface of material “1”
AP < Y0 el x eli*D using edges from the surface of material ‘R 1, 2
v®@ « e _ e? ysing edges from the surface of material “2”
dx§ < (3%o0 + iX3) — X4
dx$ < (3Xo0 + 5X3) — Xo
A@ ALY L AL L v@ 5 (xS —dxS), o =1,2
det < [AD[Z|A@ |2 — (AD . A@)2
If (det > “atiny number”) then
9@ — —dxS AP —dx§- AP —dx§ - v@® xdx§, a=12
h® (||A(2)||29(l) —AD 'A(Z)g(z))/det
h®@ « (—A(l) ,A(Z)g(l) + ||A(l) ||Zg(2))/det
X < X +dx®+hOAD £ h@A@  j =1 2.

In Algorithm 6, the smoothing scheme only uses data given by the positions of 1
preceding and following nodes on the triple line, and hence can be viewed as a combine
of Algorithms 2 and 4.

In Fig. 11, we show the action of Algorithm 6 on a multimaterial mesh consisting «
four materials whose surface nodes have been perturbed to create a nonsmooth initial -
Interior edges on the surfaces were subjected to 20 sweeps of Algorithm 4 with, and
interior edges on the triple lines were subjected to 20 sweeps with Algorithm 6. Note t
there are two triple lines running through the interior of the figure and the other “triple line
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FIG. 11. “Noisy” four-material grid before and after 20 sweeps over all surfaces and triple lines usir
Algorithm 6 and Algorithm 4 withw = 1.

run on the surface at the intersection of two materials and the exterior boundary. For
external triple lines, one can consider the “third material” conserved to be the complem
of all the materials—the “outside.” In the final grid, the surfaces are smooth, the volurr
of all four materials are preserved, and the triple lines have been smoothed out as des

5. APPLICATION TO THIN FILM EVOLUTION

To illustrate the application of volume conserving smoothing, we will show how it mair
tains mesh quality during simulation of the evolution of a thin film. TopoSim3D [9] i
a software simulator that models the chemical and physical processes involved in
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formation of thin films. It models (a) the transport of materials from the vapor phase
a reactor to the growth surface, (b) the reactive chemistry that occurs at the vapor/sur
interface, and (c) the motion of the vapor/surface interface as material is depositec
removed by the chemistry. Processes (a) and (b) provide an estimate of the rate at w

FIG. 12. (a)—(c). Thin film simulations with and without volume conserving smoothing. (a) Surfaces at tin
t = 0.8 s before three iterations of volume conserving smoothing. (b) Surfaces at 8 s after three

iterations of volume conserving smoothing—only very subtle changes. (c) Simulation without volume consen
smoothing at time of failure, = 0.504 s.
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FIG. 12—Continued

the surface will grow at any point on the surface. When the mesh nodes that lie on
vapor/surface interface are moved, the mesh distorts. Unless mesh maintenance oper:
are performed, the distortion will accumulate such that any additional surface motion v
cause a mesh element to invert which will, in turn, cause the simulation to halt. Beca
of the nature of the simulation, mesh maintenance must preserve the volume of the
terial deposited or removed. Volume conserving smoothing of surface nodes is one
of the mesh maintenance procedure; other parts include volume mesh smoothing (r
sitioning of nonsurface nodes—see Section 6), edge refinement, and grid connect
changes.

In this simulation, we are depositing a material onto a substrate which has been parti
masked with a second material. There is a square-shaped hole in the mask, and the unm
surface beneath the hole has a much higher sticking coefficient than the surrounding ma
substrate. Hence the major accumulation occurs in the central square region of the sur
In this simulation, the surface motion is known to be smooth, but the method of moti
introduces unevenness and our volume conserving smoothing will recover the smooth
face motion. To illustrate the beneficial effects of volume conserving smoothing, we r
the simulation with and without the volume conserving smoothing step. In the simulati
with smoothing, the mesh was smoothed for three iterations every 0.1 s of simulation ti
using Algorithm 4 withw = 1 and Algorithm 6 on the two sets of triple lines at and above
the substrate. Figure 12a shows the surface before the volume conserving smoothing s
t = 0.8 s; view Fig. 12b after the smoothing step. As can be seen, very little change is m
to the surface by the volume conserving smoothing at any given time-step. Althougt
each maintenance step the corrections to the mesh are minor, the cumulative effectis r
Figure 12c shows the surface aftet 0.504 s in a simulation where no volume conserving
smoothing was performed. At this point the mesh is so distorted that the simulation can
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proceed without inverting an element. We chose to perform volume conserving smoott
for three iterations every.0 s, simply because we found this was the smallest amou
of smoothing that improved the mesh sufficiently for the simulation to complete succe
fully.

6. ADDITIONAL CONSIDERATIONS

Use of single node algorithmsin this paper we have presented three single node smoot
ing algorithms (1, 3, and 5) and three edge smoothing algorithms (2, 4, and 6) that perf
volume conservative smoothing for curves, surfaces, and triple intersection lines. Becs
of the existence of nonsmooth grids that are unaffected by the single node algorithms
advocate use of the edge relaxation algorithms. It must be noted that there are cases v
only the single node algorithms can be used. For instance, if there is a imotihe interior
of a surface and all neighbors of that node are on the boundary, then there is no “inter
edge that containisthat can be relaxed by Algorithm 4 in order to alter the position. of
Use of Algorithm 3 in this case, rather than simply leaviimgptouched might be preferable.
The same consideration applies to the middle node of a triple line consisting of only t
segments. Algorithm 6 cannot be used to alter the position of this middle node, and so u
Algorithm 5 rather than leaving the node untouched might be preferable. In our examp
we did not do this extra coding and indeed it was unnecessary to do so since these prob
only occur with extremely coarse grids.

Topological anomalies. In the case of edge relaxations on triple lines, it is assumed th
each of materials 1, 2, and 3 are incident on the eé@ggas a single wedgéf, e.g. material
lisincident orxiX; as two separate wedges (i.e., the surface bounding material 1 interse
itself atX1xz), the derivation of volume conservation for Algorithnd6es not applyand
volume will not be conserved. It is important, when coding this algorithm, to detect the
(rare) cases and refrain from relaxing these kinds of edges. Alternatively, one could perf
an a posterioricheck of volumes to verify conservation and reject node movements tt
result in volume changes. (Of course, the volume check must only involve tridnghds
to the area—i.e., detect possible voluotengerather than recalculate the whole volume
every time an edge is relaxed.)

Quadruple lines. One could probably devise a scheme that could conserve all volum
incident on a quadruple line using edge smoothing, provided that corrective edge moti
more general than the rigid translation (18) are considered. We do not pursue this here.
thus we leave any quadruple lines untouched.

Triangle collapse. Whenever using Laplacian smoothing on unstructured grids (or vi
tually any other kind of smoothing scheme on unstructured grids), there is the possibi
that nodes are ejected from the polygon formed by their first neighbors and hence
triangles are inverted. Thus it is prudent to always check the orientation or quality of tric
gles after smoothing and reject disastrous moves (i.e., use “guards”). (In fact, we did
use any guards in the sample runs in this paper.)

Smoothing functions of one or two variabledf the “curves” or “surfaces” we are
considering are the graphs of piecewise linear functions of one or two variables, we can
Algorithms 1-4 to smooth the positions of the interior nodes while preserving the integr
of the functions. However, one must reject any node or edge relaxation that would ca
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the graphs to become multi-valued. (This could occur when relaxing near steep portion
the graphs.)

Volume mesh smoothinglf the goal of the user is to smooth surface meshes in a volun
conserving fashion, then the algorithms in this paper suffice. If, however, there are volu
elements conformally attached to the surface elements (e.g., triangles interior to a clc
piecewise linear curve or tetrahedra interior to a closed piecewise linear surface), then
possible to invert the volume elements when smoothing the surface elements. In this «
one can smooth the volume elements by repositioning “volume” nodes (nodes not on,
interior to the enclosing surface) in tandem with smoothing of the surface nodes—and
smoothing will avoid inversion of volume elements. In [1] and [7] smoothing of volum
elements is done by minimizing a functional which becomes infinite if volume elemer
invert, and thus moving volume nodes by requiring minimization of the functional usual
avoids inversion of elements. Nevertheless, extreme deformation of surfaces and/or lac
volume nodes to move can in principle lead to situations where changing of grid connectiy
might be the only way to avoid volume element inversion.
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